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Bending properties of creased zones 
of paperboard related to interlaminar defects 

LEIF C A R L S S O N * , A L F  DE RUVO, CHRISTER FELLERS 
Swedish Forest Products Research Laboratory, Department of Paper Technology, 
Drottning l(ristinas Vag 55, S- 114 86 Stockholm, Sweden 

A parallel beam model is presented for the bending behaviour of locally delaminated 
zones (creased zones) of paperboard. It is shown that the bending moment and the force 
levels are strongly dependent on the geometry and elastic properties of the creased zone. 
A favourable condition for low crease stiffness is a large number of long interlaminar 
failures. Experimental measurements of the crease stiffness and maximum bending 
moment for paperboards with implanted defects of various lengths and numbers were in 
reasonably good agreement with the crease stiffness predicted by the parallel beam model. 

1. Introduction 
Paperboard is an unique material with regard to its 
performance in packaging operations since it is 
easily converted from a rigid material to a flexible 
one in the creasing operation where the aim is to 
achieve a local reduction in the bending stiffness 
and maximum bending moment. In this way flat 
blanks are easily transformed to boxes by the intro- 
duction of "hinges" along predetermined lines. 

Fig. 1 presents a scheme of the creasing 
operation. In this operation the paperboard is 
forced into the recessed areas by means of a male 
rule (Figs. la and b), and the combined action of 
bending and shear causes deformation and inter- 
laminar failure of the board so that a creased 
zone is obtained (Fig. l c). Thus the creasing 
operation preconditions the paperboard so that a 
hinge is introduced which facilitates bending (Fig. 
ld). 

Although the creasibility of  paperboard is a 
problem of significant technological importance 
it does not appear to have received much attention 
from the materials science point of view. 

Emslie and Brenneman [1] reported some 
important properties of paperboard for obtaining 
good creasabihty, but no rigorous analysis of  the 
bending of a creased zone was presented. More 
recently Carlsson et  al. [2] investigated the inter- 

laminar stresses and the tendency for propagation 
of an interlaminar crack in the creased zone by the 
finite element method. 

It is to be expected that the bending properties 
of the creased zone, such as crease stiffness and 
maximum bending moment, are strongly depen- 
dent on the extent of  delamination. This paper is 
concerned with the bending behaviour of paper- 
board with implanted interlaminar defects with 
different geometries and of different numbers. 
In the analysis of the delaminated board the 
delamined zone is modelled as two beams in 
parallel, one transmitting tensile forces and one 
transmitting compressive forces. 

2. Bending analysis formulation 
Even if the creased zone consists of several 
delaminated layers, cf. Fig. 1, it is in this analysis, 
modelled by two equivalent beams in parallel, 
according to Fig. 2, that Beam 1 transmits a tensile 
force while beam 2 transmits a compressive force 
in the buckled state. The bending angle is denoted 
by r the distance between the centres of  the 
beams by h, the bending moment by Mo and the 
length of the beams by 2L. 

Consider the portion of beam 1 located to the 
right of  the vertical symmetry line in Fig. 2. With 
the coordination axes as shown in Fig. 3 the 
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(a) (b) 

(c) 
Figure 1 Schematic view of the creasing and bending operations. (a) and (b) The board is deformed by the action of a 
male rule. (c) Appearance of the creased zone. (d) Bending of the creased zone. 

differential equation for the deflection curve is 
[3] 

d01 
EI1 ds P [y(L) --y(s)]  + M 1 (1) 

where E is the elastic modulus of  the material, 11 
is the moment of  inertia of  beam 1, 01 is the 
angle between the horizontal and the tangent to 
the deflection curve of  beam 1, s is the length of  
the deflection curve measured from the vertical 
symmetry line in Fig. 2, P is the axial force and 
MI is the bending moment at the right-hand 
boundary of  beam 1. Since 

dy 
- -  = sin 01 (2) 
ds 

we obtain 

cs  
y (L ) - - y ( s )  = - - j /~  sin 01 as'. (3) 

After substitution in Equation 1 and differentiation 
with respect to 01 

EI1 d201 
ds 2 P sin 01 = 0. (4) 

In an analogous manner, the differential equation 
for the deflection curve of  beam 2 may be shown 
to be: 

d202 
EI2 ~s 2 + P sin 0 2 = 0 (5) 

with the symbols I2 and 02 for beam 2 defined in 
the same way as the corresponding symbols for 
beam 1. 

S =  - L  
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x Figure 2 Parallel beam model of 
the creased zone. 
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Figure 3 Coordinates used to express the deflection curve 
of beam 1 when subjected to axial force and bending 
moment. 

The following boundary conditions apply 

01(L) = 02(L) = ~ (6) 

0,(0) = 02(0) = O. (7) 

Bending of the parallel beam configuration is 
caused by a rotation (r of the ends, see Fig. 2. 
The following boundary condition for the horizon- 
tal displacements at the right-hand boundary 
can then be formulated from geometrical con- 
siderations: 

xI (L)  --x2(L) = h sin r (8) 

where xl  (L) and x2 (L)are the horizontal displace- 
ments of  the deflection curves at the right-hand 
boundaries of beams 1 and 2, respectively. 

Since dx/ds = cos O, Equation 8 can be written: 

3 0 ,  . . . .  , 

f t  (cos 01--  cos 0~) ds = h sing). (9) 

These equations enable 0x and 0~ to be deter- 
mined as a function of s. Finally, the bending 
moment Mo is obtained by 

(dO, 1 [6021 
Mo = EI, \ds ]s=L + Eg2 t ds ]s=L 

+ Ph cos r (10) 

An approximate solution to the above equations is 
presented in the Appendix. 

2 .1 .  I n f l u e n c e  o f  g e o m e t r y  

The influence of the geometry of the creased zone 
on the bending moment and the forces in the 
beams can be studied by the parallel beam model 
presented above. Dimensionless quantities, derived 
from the equations in the appendix, are used. 
Tile parameters used to characterize the geometry 
of the creased zone are h/L and the moment of 
inertia ratio I2/Ia. Both I1 and 12 are very sensitive 
to the extent of delamination in the creased zone 
because the moment of inertia of a beam is propor- 
tional to the cube of its thickness. For example, if 
instead of a homogeneous beam, beam 2 represents 
two beams of half the thickness,/2 will be reduced 
by a factor four since the two beams are uncoupled. 

Fig. 4 shows the dimensionless bending moment 
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8 Figure 4 Theoretical dimension- 
less bending moment against 
bending angle. 
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Figure 5 Theoretical dimension- 
less force against bending angle. 

MoL/EI1 against the bending angle. It is noted 
that the bending moment is greater than zero for 
a zero bending angle. This is so because the model 
permits no bending before the critical buck/ing 
load of beam 2 is reached. 

It is clear that the bending moment is highly 
sensitive to the moment of  inertia ratio. A reduc- 
tion in /2 with all other parameters constant 
obviously leads to a large reduction in the bending 
moment. The value of h/L does not influence the 
dimensionless bending moment appreciably. How- 
ever, an increase in length of the delaminated 
zone (2L) leads, with all other parameters constant, 
to a reduction in the absolute bending moment. 

Fig. 5 shows the dimensionless force PL2/EI~ 
against the bending angle. As in the case of the 
bending moment, the dimensionless force is 
rather insensitive to the h/L ratio while the 

absolute force decreases with decreasing 12/11 
ratio and increasing length (2L). 

3.  E x p e r i m e n t a l  de ta i l s  
In order to vary the geometry a~ad the extent 
of delamination of the creased zone in a con- 
trolled way, defects consisting of strips of  0.01 
mm thick aluminium foils were implanted 
between the plies in an eight-ply paperboard 
in a manner exemplified in Fig. 6. The paper- 
board was made from bleached chemical pulp in 
a laboratory Formette Dynamique sheet former 
and the strips were introduced during the sheet 
forming process. 

The defect strips were in some cases 2 mm and 
in other cases 3ram in width and they were 
aligned either with the lowest modulus direction 
(CD) or with the highest modulus direction 

" 1 3  r 

2 or 3 m m  

Figure 6 Example showing 
how interlaminar defects are 
implanted at interfaces 2, 4 and 
6. The debonded length is 2 or 
3mm. 
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T A B L E  I Location and length of implanted interlaminar defects. Note that interface 1 is located between ply 1 (top 
ply) and ply 2 in the eight-ply construction 

Number of defects Length Sample identification Interface 

(mm) 1 2 3 4 5 6 7 

1 2 1/2 x 

3 2 3/2 x x x 
3 3 3/3 x x x 
7 2 7/2 x x x x x x 
7 3 7/3 x x x x x x 

(MD). 1, 3 and 7 defects were implanted at differ- 
ent locations according to Table I. 

A paperboard was also made with no implanted 
defects in order to permit an evaluation of the 
material properties. The thickness [4], grammage 
(weight per unit area), density and the uniaxial 
stress-strain properties evaluated using a standard 
Instron testing machine are presented in Table II. 

Earlier studies [1,2] show that the form of the 
creased zone and consequently the geometry of 
the tools used in the creasing operation plays an 
important role for the behaviour in the bending 
operation. The geometry used in the creasing 
operation was, therefore, the same for all samples. 
The creasing operation was performed with a 
PATRA Carton Board Creaser [5] developed for 
laboratory testing of the creasability of paper- 
board. The groove width was 2.3 mm, the width 
of the rule 0.7 mm and the vertical displacement 
of the paperboard at the centre of the creasing 
zone was 0.3 mm, cf. Fig. 1. 

The bending properties of  the creased samples, 
namely crease stiffness and bending strength, were 
evaluated in a device developed for measuring the 
pure bending properties of  the paper [6]. With this 
device the sample is clamped in two rotatable clamps 
and subjected to a pure bending moment. The crease 
stiffness of the creased samples was evaluated from 
the initial slope of the bending moment against the 
bending angle curve (AMo/Ar and the bending 
strength from the maximum bending moment. In 
order to minimize the influence on crease stiffness 
of the uncreased portion of the samples, a short 
free span of 5 mm was used in all cases. 

For the determination of the geometrical 
parameters h/L and I2/I1 scanning electron micro- 
scope (SEM) pictures were taken of samples which 
were kept in the bent state by gluing one edge of 
the sample to a piece of paper. 

4. Results and discussion 
4.1. F r a c t o g r a p h y  
Figs. 7 to 9 show representative scanning elec- 
tron micrographs of the creased zone of sample 
0/0 MD, 3/3 MD and 7/3 MD, respectively, bent 
to both small and large angles. Fig. 7 shows that 
a major interlaminar crack exists at small bending 
angles in a sample without implanted defects 
(0/0 MD). At larger angles a significantly greater 
extent of delamination is noted. This is likely to 
be due to propagation of incipient interply failure 
at higher stress levels, see [2]. 

Fig. 8 shows a sample with three implanted 
defects (3/3 MD). At larger angles failure is appar- 
ent at the lower part of the right-hand boundary 
of the creased zone indicating a region of high 
compressive stresses. Fig. 9 shows the appearance 
of a creased zone of a sample with seven implanted 
defects (7/3 MD). 

4.2. Determination of the parameters used 
in the theory 

It appears from Figs. 7 to 9 that only the outer- 
most ply is subjected to tension and all others to 
compression. This means that if the creased zone is 
divided up into N beams by the implanted defects, 
one beam is subjected to tension and N - -  1 beams 
to compression, i.e. 

T A B L E  II  Properties of paperboard with no implanted defects, t =  thickness, w =grammage,  p =dens i ty ,  E =  
elastic modulus, a t = ultimate tensile stress and e t = failure strain 

Direction t w p E ~t et 
(ram) (g m-2) (kg m-3) (MN m-2) (MN m-2) (%) 

MD 9700 98.0 2.8 
0.47 425 910 

CD 5740 73.0 4.0 
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Figure 7 Creased paperboard with no implanted defects (0/0 MD) bent through (a) a small and (b) a large angle. 

I1 = ta~/12 (11) 

where tx is the thickness of the beam under 
tension. 

Since the beams under compression are 
uncoupled, 

/2 = (N- -  l)  (tk)a/12 (12) 

where t k is the thickness of each compressed 
beam. 

In order to be able to compare theory with 
experiment, the parameters h/L and I2/I1 were 
determined from the SEM pictures of the creased 
samples with implanted defects. The parameters 
h and L were measured according to Fig. 10. 
EI values were obtained from the material pro- 
perties in Table II and the number of delaminated 
plies according to Equations 11 and 12. The  
parameters obtained are tabulated in Table III. 
Note the very wide range of I2/I1 and EII values. 

4.3. Bending properties 
The bending moment was recorded as a function 
of bending angle for both uncreased and creased 
samples. Table IV gives the measured values of 
crease stiffness and bending strength. 

A comparison of the crease stiffness of boards 
with only one defect implanted with that of the 
boards with no defects implanted show no notice- 
able reduction in crease stiffness. However, the 
presence of more defects reduces the crease stiff- 
ness to a great extent. The greatest reduction in 
crease stiffness is obtained for the board with the 
most and the longest defects which is in qualitative 
agreement with the theory. 

The bending strength is also reduced to a great 
extent by the presence of implanted defects, 
especially if comparison is made with the data for 
the uncreased paperboard. 

4.4. T h e o r y  versus e x p e r i m e n t  
The parameters h/L and I2/I1 obtained from Table 
III were inserted in Equations 4, 5, 9 and 10 and 
the dimensionless bending moment against the 
bending angle curves, such as those shown in Fig. 
4, were plotted. As pointed out earlier, since the 
bending of creased zone is a post-buckling problem 
the theoretical crease stiffness (AMo/Aq~) is defined 
as the slope of the bending moment against the 
bending angle. Since the dimensionless moment 
is an almost linear function of the angle, the 

Figure 8 Creased paperboard with three defects (3/3 MD) bent through (a) a small and (b) a large angle. 
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Figure 9 Creased paperboard with seven defects, i.e. at all ply interfaces, (7/3 MD) bent through (a) a small and (b) 
large angle. 

average slope in the interval 0 to 10 ~ was evaluated 
from the curves. 

The following theoretical dimensionless crease 
stiffness was thus obtained: 

S T = ~ (MoL/EI1)/zX~. (13) 

The experimental crease stiffness (zXMo/A~b) values 
given in Table IV, scaled with respect to L and 
EI1 given in Table III, give the experimental 
dimensionless crease stiffness: 

SE = Z~4o [L/(dx4) x EI~)]. (14) 

Fig. 11 shows theoretical and experimental 
values of the dimensionless crease stiffness plotted 
on a logarithmic scale against the number of 
defects. Note that the difference between MD 
and CD is very small and that the defect size has 
a small influence compared with that of the 
number of defects. 

The experimental crease stiffness values are 
very close to the theoretical values for the samples 
with one defect tested in both principal material 
directions. For the samples with 3 and 7 defects, 
the theoretical crease stiffness values are higher 
than those experimentally observed. 

Since the crease stiffness is very sensitive to 
the properties of the constituent plies in the 
creased zone and to the fixity of the ends of the 

2L 

beams, the low crease stiffness values observed 
are likely to be due to damage to the plies caused 
in the creasing operation. It is probable that the 
boards with many thin plies are more sensitive 
to the action of the creasing tools than the boards 
with only one implanted defect. 

5. Conclusions 
The crease stiffness and the bending strength of 
creased zones with interlaminar defects were 
found to decrease strongly with the number of 
interlaminar defects. 

The bending of the creased delaminated zones 
was analysed by a parallel beam configuration. 
An approximate solution of the equations for the 
deflection curve enables the bending moment to 
be obtained in the elastic region as a function of 
the bending angle. 

Experimental dimensionless crease stiffness 
values showed an overall good agreement with 
predicted values. Observed deviations are attributed 
to damage to the plies in the creased zone during 
the creasing operation. 

In practice it is necessary to create hinge-like 
performance zones in paperboard. This study 
shows the importance of the fractography to 

TABLE III Parameters evaluated from SEM pictures 
of the creased zone 

1/2 MD 
1/2 CD 

3/2 MD 
3/3 MD 

7/2 MD 

Figure 10 The parameters h and L of the creased zone. 7/3 MD 

Sample h L 12~ , E1 l 
(mm) (mm) (mNm) 

0.24 1.3 0.037 37.7 
0.24 1.1 0.037 22.3 

0.24 1,2 3 1.40 
0.23 1,8 3 1.23 

0.24 1.2 7 0.175 
0.23 1.7 7 0.154 
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TABLE IV Bending properties evaluated for uncreased 
and creased samples. MD = longitudinal direction, CD = 
transverse direction 

Sample Crease Bending 
stiffness strength 
(mNm/m ~ (Nm m-l) 

Uncreased MD - 2.08 
Uncreased CD - 1.61 

0/0" MD 262 1.16 
0]0 CD 182 0.93 

1/2 MD 258 1.28 
1/2 CD 185 0.99 

3/2 MD 209 1.24 
3/3 MD 181 1.13 

7/2 MD 162 0.95 
7/3 MD 152 0.83 

*Sample 0/0 is a creased sample with no implanted defects. 

regulate this behaviour. The character of  the 
interlaminar failure is, o f  course, strongly related 
to the structure of  the paperboard.  Any means of  
increasing the extent of  delamination in the 
creased zone, such as a suitable disposition of  raw 
material in a multi-ply board, will consequently 
improve the creasability of  the material. 
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Figure l l  Theoretical and experimental values of the 
dimensionless crease stiffness. 
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A p p e n d i x  
Equations 4 to 9 used to calculate the deflection 
curve of  the parallel beam configuration may be 
summarized as: 

EIlO'~--Psin 01 = 0 (A1) 

EI20~ + P sin 02 = 0 (12 )  

with the boundary conditions: 

01(L) = 02(L) = r (13)  

01(0) = 02(0) = 0 (14 )  

f:(cOSOl --CosO2)ds = hsin~b. (15)  

To permit an analytical solution to the above 
equations, the sin 0 and cos 0 terms are replaced 
by a few terms in their respective Taylor series. 

Equation 12  is used to determine post-buckling 
behaviour of  the beam in compression. Therefore 
a third-order term is included in the Taylor series 
approximation to obtain a better approximation 
to the problem. In the other equations, only first 
or second order terms are included. 

With 721 = PLZ/EI1 and 3'22 = PL2/EI2 we thus 

obtain:  

0" ~'7 1 --~-7 01 = 0 (A6)  

02 + ~  0 2 - -  = 0 (17)  

�89 f :  0 3  - 07) ds = h q~. (A8) 

Equation A6 has the solution 

01 = q~ sin h (71s/L)/sin h 71- (A9) 

The solution of  Equation A7 may be obtained by 
a Fourier series [7]. To a first approximation we 
obtain 
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02 = A1 s in~s+A3 sin3~s (A10) 

where IA 3 [ ~ [A 1 I. 
Substituting Equation A10 in Equation A7, we 

obtain after some algebraic manipulation 

~ (3":/L) [1 -- (A]/8)] 1/2 (AI 1) 

- A 1  
A3 = [(192/A~) -- 21] (A12) 

Substitution of Equations A9 and A10 in Equation 
A8 yields 

~2 [ s i n h 2 3 ' , ] l  
4 sin h~3'a 2 3'x 

2 3"2~ ] AaA3 

x t 
(A13) 

in which/3 = [1 -- (A~/8)] 1/2. 
The boundary condition Equation A3 gives in 

Equation A10 

sin (33332/3) ]= 
Aa sin (3'2J3)-- (192/A~)-- 21J ~b 

(A14) 

The force P in the beams is expressed by the 

dimensionless parameters 3'~ and 3'2 where 

"Ix = 72 (I2/I1) v2 (A15) 

For a given geometry (h/L and 12/11) and value 
of 3332, Equations A13 and A14 may be combined 
to give A a and thus ~b by means of an iterative 
procedure. 
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